Parathyroid Hormone-Related Protein Promotes Rat Stem Leydig Cell Differentiation

نویسندگان

  • Tiantian Song
  • Yiyan Wang
  • Huitao Li
  • Lanlan Chen
  • Jianpeng Liu
  • Xianwu Chen
  • Xiaojun Li
  • Xiaoheng Li
  • Linxi Li
  • Qingquan Lian
  • Ren-Shan Ge
چکیده

The regulatory factors for stem Leydig cell development are largely unknown. Herein, we reported that parathyroid hormone-related protein (PTHrP) may be a factor to regulate this process. The effects of PTHrP on rat stem Leydig cell proliferation and differentiation were investigated using a stem Leydig cell culture system and an ethane dimethane sulfonate (EDS)-treated in vivo Leydig cell regeneration model. PTHrP (1,000 pg/ml) significantly increased medium testosterone level and up-regulated STAR, CYP17A1, and 17β-HSD3 expressions. Co-treatment with PKA inhibitor H-89 or PKC inhibitor U73122 reversed PTHrP-mediated increase of testosterone production in vitro. Intratesticular injection of PTHrP (100 ng/testis) into the Leydig cell-depleted testis from post-EDS day 7 to 21 significantly increased serum testosterone level, up-regulated LHCGR, SCARB1, CYP11A1, 11β-HSD1, and CYP17A1 expressions. It also enlarged Leydig cell size without affecting PCNA-labeled Leydig cell number. This indicates that PTHrP promotes stem Leydig cell differentiation. PTHrP in vivo increased CREB and p-CREB levels, suggesting that PTHrP acts via a PKA-CREB signaling pathway. In conclusion, PTHrP stimulates stem Leydig cell differentiation without affecting its proliferation, showing its novel action and mechanism on rat stem Leydig cell development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aldosterone Blocks Rat Stem Leydig Cell Development In Vitro

Aldosterone (ALDO) is a primary endogenous mineralocorticoid, appearing as the main hormone controlling sodium and water homeostasis. Its emerging role in the development of many organs has gained interest over the past few years. In the testis, Leydig cells contain mineralocorticoid receptors and ALDO stimulates androgen synthesis via the mineralocorticoid receptors in rat adult Leydig cells. ...

متن کامل

Activation of the PTHRP/adenylate cyclase pathway promotes differentiation of rat XEN cells into parietal endoderm, whereas Wnt/β-catenin signaling promotes differentiation into visceral endoderm.

During early mammalian development, primitive endoderm (PrE) is specified and segregated away from the pluripotent epiblast. At a later developmental stage, PrE forms motile parietal endoderm (PE) lying proximal to the trophectoderm, and visceral endoderm (VE) that contacts the developing epiblast and extraembryonic ectoderm. Mouse extraembryonic endoderm (XEN) cells were isolated and became wi...

متن کامل

Parathyroid hormone-related peptide stimulates osteogenic cell proliferation through protein kinase C activation of the Ras/mitogen-activated protein kinase signaling pathway.

We investigated the mechanisms of parathyroid hormone-related peptide (PTHrP)-mediated effects on osteogenic cells in primary rat bone marrow cell (BMC) cultures. We first demonstrated by reverse transcriptase-polymerase chain reaction and immunocytochemistry that BMCs express the type I parathyroid hormone/PTHrP receptor. Treatment with PTHrP increased osteogenic cell proliferation as determin...

متن کامل

Calcium stimulates parathyroid hormone-related protein production in Leydig tumor cells through a putative cation-sensing mechanism.

The production of parathyroid hormone-related protein (PTHrP) is regulated by a variety of hormones and growth factors. Previous research has shown that several PTHrP-producing cells are influenced by extracellular calcium (Ca(2+)(o)) concentration, with elevated levels increasing PTH-like activity released by cultured H500 rat Leydig tumor cells through a post-transcriptional mechanism. We hav...

متن کامل

TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs

Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017